今回はこのサイトのexample/chapter02をやる。CPU上とGPU上でのアレイの合計の速度比較をしている。
スポンサーリンク
chapter02フォルダに移動¶
cd /home/workspace/git/professional-cuda-c-programming/examples/chapter02
ls
スポンサーリンク
CPU版コードのロード¶
# %load sumArraysOnHost.c
#include <stdlib.h>
#include <time.h>
/*
* This example demonstrates a simple vector sum on the host. sumArraysOnHost
* sequentially iterates through vector elements on the host.
*/
void sumArraysOnHost(float *A, float *B, float *C, const int N)
{
for (int idx = 0; idx < N; idx++)
{
C[idx] = A[idx] + B[idx];
}
}
void initialData(float *ip, int size)
{
// generate different seed for random number
time_t t;
srand((unsigned) time(&t));
for (int i = 0; i < size; i++)
{
ip[i] = (float)(rand() & 0xFF) / 10.0f;
}
return;
}
int main(int argc, char **argv)
{
int nElem = 1024;
size_t nBytes = nElem * sizeof(float);
float *h_A, *h_B, *h_C;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
h_C = (float *)malloc(nBytes);
initialData(h_A, nElem);
initialData(h_B, nElem);
sumArraysOnHost(h_A, h_B, h_C, nElem);
free(h_A);
free(h_B);
free(h_C);
return(0);
}
スポンサーリンク
GPU版コードのロード¶
GPU側のコード
# %load sumArraysOnGPU-timer.cu
#include "../common/common.h"
#include <cuda_runtime.h>
#include <stdio.h>
/*
* This example demonstrates a simple vector sum on the GPU and on the host.
* sumArraysOnGPU splits the work of the vector sum across CUDA threads on the
* GPU. Only a single thread block is used in this small case, for simplicity.
* sumArraysOnHost sequentially iterates through vector elements on the host.
* This version of sumArrays adds host timers to measure GPU and CPU
* performance.
*/
void checkResult(float *hostRef, float *gpuRef, const int N)
{
double epsilon = 1.0E-8;
bool match = 1;
for (int i = 0; i < N; i++)
{
if (abs(hostRef[i] - gpuRef[i]) > epsilon)
{
match = 0;
printf("Arrays do not match!\n");
printf("host %5.2f gpu %5.2f at current %d\n", hostRef[i],
gpuRef[i], i);
break;
}
}
if (match) printf("Arrays match.\n\n");
return;
}
void initialData(float *ip, int size)
{
// generate different seed for random number
time_t t;
srand((unsigned) time(&t));
for (int i = 0; i < size; i++)
{
ip[i] = (float)( rand() & 0xFF ) / 10.0f;
}
return;
}
void sumArraysOnHost(float *A, float *B, float *C, const int N)
{
for (int idx = 0; idx < N; idx++)
{
C[idx] = A[idx] + B[idx];
}
}
__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) C[i] = A[i] + B[i];
}
int main(int argc, char **argv)
{
printf("%s Starting...\n", argv[0]);
// set up device
int dev = 0;
cudaDeviceProp deviceProp;
CHECK(cudaGetDeviceProperties(&deviceProp, dev));
printf("Using Device %d: %s\n", dev, deviceProp.name);
CHECK(cudaSetDevice(dev));
// set up data size of vectors
int nElem = 1 << 24;
printf("Vector size %d\n", nElem);
// malloc host memory
size_t nBytes = nElem * sizeof(float);
float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
hostRef = (float *)malloc(nBytes);
gpuRef = (float *)malloc(nBytes);
double iStart, iElaps;
// initialize data at host side
iStart = seconds();
initialData(h_A, nElem);
initialData(h_B, nElem);
iElaps = seconds() - iStart;
printf("initialData Time elapsed %f sec\n", iElaps);
memset(hostRef, 0, nBytes);
memset(gpuRef, 0, nBytes);
// add vector at host side for result checks
iStart = seconds();
sumArraysOnHost(h_A, h_B, hostRef, nElem);
iElaps = seconds() - iStart;
printf("sumArraysOnHost Time elapsed %f sec\n", iElaps);
// malloc device global memory
float *d_A, *d_B, *d_C;
CHECK(cudaMalloc((float**)&d_A, nBytes));
CHECK(cudaMalloc((float**)&d_B, nBytes));
CHECK(cudaMalloc((float**)&d_C, nBytes));
// transfer data from host to device
CHECK(cudaMemcpy(d_A, h_A, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_B, h_B, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_C, gpuRef, nBytes, cudaMemcpyHostToDevice));
// invoke kernel at host side
int iLen = 512;
dim3 block (iLen);
dim3 grid ((nElem + block.x - 1) / block.x);
iStart = seconds();
sumArraysOnGPU<<<grid, block>>>(d_A, d_B, d_C, nElem);
CHECK(cudaDeviceSynchronize());
iElaps = seconds() - iStart;
printf("sumArraysOnGPU <<< %d, %d >>> Time elapsed %f sec\n", grid.x,
block.x, iElaps);
// check kernel error
CHECK(cudaGetLastError()) ;
// copy kernel result back to host side
CHECK(cudaMemcpy(gpuRef, d_C, nBytes, cudaMemcpyDeviceToHost));
// check device results
checkResult(hostRef, gpuRef, nElem);
// free device global memory
CHECK(cudaFree(d_A));
CHECK(cudaFree(d_B));
CHECK(cudaFree(d_C));
// free host memory
free(h_A);
free(h_B);
free(hostRef);
free(gpuRef);
return(0);
}
スポンサーリンク
コードの実行¶
!nvcc -O2 -arch=sm_61 -o sumArraysOnGPU-timer sumArraysOnGPU-timer.cu
!./sumArraysOnGPU-timer
0.013175/0.001421
GPUはCPUの9.3倍処理速度が高速だった。
スポンサーリンク
スポンサーリンク