Python:機械学習を使って1ヶ月先の株価を予測する(AMD編)

その買うを、もっとハッピーに。|ハピタス

このサイトを参考にしながら1ヶ月先の株価の予測をしてみる。

スポンサーリンク

予測関数の構築

先ずは必要なモジュールをインポートする。

import sys
import warnings

if not sys.warnoptions:
    warnings.simplefilter('ignore')
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from datetime import datetime
from datetime import timedelta
from tqdm import tqdm
from pandas_datareader import data as pdr
import yfinance as yf
sns.set()
tf.compat.v1.random.set_random_seed(1234)

今回予測する銘柄はAMDにする。

tickers = (['AMD'])

2019年7月19日から1ヶ月先のAMDの株価を予測する。

import datetime

stocks_start = datetime.datetime(2018, 1, 1)
stocks_end = datetime.datetime(2019, 7, 18)

def get(tickers, startdate, enddate):
    def data(ticker):
        return (pdr.get_data_yahoo(ticker, start=startdate, end=enddate))
    datas = map(data, tickers)
    return(pd.concat(datas, keys=tickers, names=['Ticker', 'Date']))
               
all_data = get(tickers, stocks_start, stocks_end)
all_data.tail()
High Low Open Close Volume Adj Close
Ticker Date
AMD 2019-07-12 33.389999 32.590000 32.759998 33.209999 51509700 33.209999
2019-07-15 34.549999 33.270000 33.340000 34.389999 65565200 34.389999
2019-07-16 34.860001 33.799999 34.299999 33.849998 66912700 33.849998
2019-07-17 34.299999 33.490002 34.009998 33.599998 42557900 33.599998
2019-07-18 33.459999 32.419998 33.029999 33.000000 58610900 33.000000
df = all_data[['Open','High','Low','Close','Adj Close','Volume']]
df.reset_index(level='Ticker',drop=True,inplace=True)
df.reset_index(inplace=True)
df.tail()
Date Open High Low Close Adj Close Volume
383 2019-07-12 32.759998 33.389999 32.590000 33.209999 33.209999 51509700
384 2019-07-15 33.340000 34.549999 33.270000 34.389999 34.389999 65565200
385 2019-07-16 34.299999 34.860001 33.799999 33.849998 33.849998 66912700
386 2019-07-17 34.009998 34.299999 33.490002 33.599998 33.599998 42557900
387 2019-07-18 33.029999 33.459999 32.419998 33.000000 33.000000 58610900
minmax = MinMaxScaler().fit(df.iloc[:, 4:5].astype('float32')) # Close index
df_log = minmax.transform(df.iloc[:, 4:5].astype('float32')) # Close index
df_log = pd.DataFrame(df_log)
df_log.head()
0
0 0.058327
1 0.081255
2 0.104183
3 0.094529
4 0.110619

This example is using model 1.lstm, if you want to use another model, need to tweak a little bit, but I believe it is not that hard.
今回の例ではmodel1.lstmを使用している。もし、別のモデルを使いたい場合、若干の変更が必要だが、そんなに難しくないはずだ。

I want to forecast 30 days ahead! So just change test_size to forecast t + N ahead.
30日先を予測したいので、test_sizeをt + N先を予測するように変更すればいい。

Also, I want to simulate 10 times, 10 variances of forecasted patterns. Just change simulation_size.
また、simulation_sizeを変更して、10種類の予測パターンを使ってシミュレーションを10回行うようにする。

simulation_size = 10
num_layers = 1
size_layer = 128
timestamp = 5
epoch = 300
dropout_rate = 0.8
test_size = 30
learning_rate = 0.01

df_train = df_log
df.shape, df_train.shape
((388, 7), (388, 1))
class Model:
    def __init__(
        self,
        learning_rate,
        num_layers,
        size,
        size_layer,
        output_size,
        forget_bias = 0.1,
    ):
        def lstm_cell(size_layer):
            return tf.nn.rnn_cell.LSTMCell(size_layer, state_is_tuple = False)

        rnn_cells = tf.nn.rnn_cell.MultiRNNCell(
            [lstm_cell(size_layer) for _ in range(num_layers)],
            state_is_tuple = False,
        )
        self.X = tf.placeholder(tf.float32, (None, None, size))
        self.Y = tf.placeholder(tf.float32, (None, output_size))
        drop = tf.contrib.rnn.DropoutWrapper(
            rnn_cells, output_keep_prob = forget_bias
        )
        self.hidden_layer = tf.placeholder(
            tf.float32, (None, num_layers * 2 * size_layer)
        )
        self.outputs, self.last_state = tf.nn.dynamic_rnn(
            drop, self.X, initial_state = self.hidden_layer, dtype = tf.float32
        )
        self.logits = tf.layers.dense(self.outputs[-1], output_size)
        self.cost = tf.reduce_mean(tf.square(self.Y - self.logits))
        self.optimizer = tf.train.AdamOptimizer(learning_rate).minimize(
            self.cost
        )
        
def calculate_accuracy(real, predict):
    real = np.array(real) + 1
    predict = np.array(predict) + 1
    percentage = 1 - np.sqrt(np.mean(np.square((real - predict) / real)))
    return percentage * 100

def anchor(signal, weight):
    buffer = []
    last = signal[0]
    for i in signal:
        smoothed_val = last * weight + (1 - weight) * i
        buffer.append(smoothed_val)
        last = smoothed_val
    return buffer
def forecast():
    tf.reset_default_graph()
    modelnn = Model(
        learning_rate, num_layers, df_log.shape[1], size_layer, df_log.shape[1], dropout_rate
    )
    sess = tf.InteractiveSession()
    sess.run(tf.global_variables_initializer())
    date_ori = pd.to_datetime(df.iloc[:, 0]).tolist()

    pbar = tqdm(range(epoch), desc = 'train loop')
    for i in pbar:
        init_value = np.zeros((1, num_layers * 2 * size_layer))
        total_loss, total_acc = [], []
        for k in range(0, df_train.shape[0] - 1, timestamp):
            index = min(k + timestamp, df_train.shape[0] - 1)
            batch_x = np.expand_dims(
                df_train.iloc[k : index, :].values, axis = 0
            )
            batch_y = df_train.iloc[k + 1 : index + 1, :].values
            logits, last_state, _, loss = sess.run(
                [modelnn.logits, modelnn.last_state, modelnn.optimizer, modelnn.cost],
                feed_dict = {
                    modelnn.X: batch_x,
                    modelnn.Y: batch_y,
                    modelnn.hidden_layer: init_value,
                },
            )        
            init_value = last_state
            total_loss.append(loss)
            total_acc.append(calculate_accuracy(batch_y[:, 0], logits[:, 0]))
        pbar.set_postfix(cost = np.mean(total_loss), acc = np.mean(total_acc))
    
    future_day = test_size

    output_predict = np.zeros((df_train.shape[0] + future_day, df_train.shape[1]))
    output_predict[0] = df_train.iloc[0]
    upper_b = (df_train.shape[0] // timestamp) * timestamp
    init_value = np.zeros((1, num_layers * 2 * size_layer))

    for k in range(0, (df_train.shape[0] // timestamp) * timestamp, timestamp):
        out_logits, last_state = sess.run(
            [modelnn.logits, modelnn.last_state],
            feed_dict = {
                modelnn.X: np.expand_dims(
                    df_train.iloc[k : k + timestamp], axis = 0
                ),
                modelnn.hidden_layer: init_value,
            },
        )
        init_value = last_state
        output_predict[k + 1 : k + timestamp + 1] = out_logits

    if upper_b != df_train.shape[0]:
        out_logits, last_state = sess.run(
            [modelnn.logits, modelnn.last_state],
            feed_dict = {
                modelnn.X: np.expand_dims(df_train.iloc[upper_b:], axis = 0),
                modelnn.hidden_layer: init_value,
            },
        )
        output_predict[upper_b + 1 : df_train.shape[0] + 1] = out_logits
        future_day -= 1
        date_ori.append(date_ori[-1] + timedelta(days = 1))

    init_value = last_state
    
    for i in range(future_day):
        o = output_predict[-future_day - timestamp + i:-future_day + i]
        out_logits, last_state = sess.run(
            [modelnn.logits, modelnn.last_state],
            feed_dict = {
                modelnn.X: np.expand_dims(o, axis = 0),
                modelnn.hidden_layer: init_value,
            },
        )
        init_value = last_state
        output_predict[-future_day + i] = out_logits[-1]
        date_ori.append(date_ori[-1] + timedelta(days = 1))
    
    output_predict = minmax.inverse_transform(output_predict)
    deep_future = anchor(output_predict[:, 0], 0.4)
    
    return deep_future
results = []
for i in range(simulation_size):
    print('simulation %d'%(i + 1))
    results.append(forecast())
W0819 14:20:08.312025 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a324ed198>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 1
train loop: 100%|██████████| 300/300 [01:03<00:00,  5.07it/s, acc=97.2, cost=0.00204]
W0819 14:21:12.103535 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a324edfd0>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 2
train loop: 100%|██████████| 300/300 [01:00<00:00,  5.02it/s, acc=97.4, cost=0.00168]
W0819 14:22:13.054568 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a31152be0>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 3
train loop: 100%|██████████| 300/300 [01:01<00:00,  4.41it/s, acc=96.8, cost=0.00258]
W0819 14:23:15.340584 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a3008fb70>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 4
train loop: 100%|██████████| 300/300 [01:00<00:00,  5.12it/s, acc=96.7, cost=0.00264]
W0819 14:24:16.473429 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a1ddc32e8>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 5
train loop: 100%|██████████| 300/300 [01:00<00:00,  5.15it/s, acc=96.8, cost=0.00237]
W0819 14:25:17.359746 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a1c545390>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 6
train loop: 100%|██████████| 300/300 [01:00<00:00,  5.09it/s, acc=97.1, cost=0.00228]
W0819 14:26:18.476543 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f4a1c0fdf60>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 7
train loop: 100%|██████████| 300/300 [01:00<00:00,  5.03it/s, acc=96.8, cost=0.00259]
W0819 14:27:19.361239 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f49fda5a438>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 8
train loop: 100%|██████████| 300/300 [01:02<00:00,  4.64it/s, acc=97.1, cost=0.00205]
W0819 14:28:22.066144 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f49fc254630>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 9
train loop: 100%|██████████| 300/300 [01:03<00:00,  5.16it/s, acc=97.3, cost=0.00185]
W0819 14:29:25.801614 139962407122752 rnn_cell_impl.py:893] <tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7f49e6ba9b70>: Using a concatenated state is slower and will soon be deprecated.  Use state_is_tuple=True.
simulation 10
train loop: 100%|██████████| 300/300 [01:03<00:00,  4.85it/s, acc=96.7, cost=0.00268]
date_ori = pd.to_datetime(df.iloc[:, 0]).tolist()
for i in range(test_size):
    date_ori.append(date_ori[-1] + timedelta(days = 1))
date_ori = pd.Series(date_ori).dt.strftime(date_format = '%Y-%m-%d').tolist()
date_ori[-5:]
['2019-08-13', '2019-08-14', '2019-08-15', '2019-08-16', '2019-08-17']
スポンサーリンク

Sanity check

Some of our models might not have stable gradient, so forecasted trend might really hangwired. You can use many methods to filter out unstable models.
使用するモデルが全て正常に機能するとは限らないので、使い物にならないモデルを間引くための多くの方法を利用できる。

This method is very simple,(今回の方法は非常に単純)

If one of element in forecasted trend lower than min(original trend).
予測トレンドが実際のトレンドの最小値より小さい場合
If one of element in forecasted trend bigger than max(original trend) * 2.
予測トレンドが実際のトレンドの最大値より大きい場合

If both are true, reject that trend.
もし両方共に真ならそのトレンドを拒否する。

accepted_results = []
for r in results:
    if (np.array(r[-test_size:]) < np.min(df['Close'])).sum() == 0 and \
    (np.array(r[-test_size:]) > np.max(df['Close']) * 2).sum() == 0:
        accepted_results.append(r)
len(accepted_results)
9
accuracies = [calculate_accuracy(df['Close'].values, r[:-test_size]) for r in accepted_results]

plt.figure(figsize = (22, 15))
for no, r in enumerate(accepted_results):
    plt.plot(r, label = 'forecast %d'%(no + 1))
plt.plot(df['Close'], label = 'true trend', c = 'black')
plt.title('average accuracy: %.4f'%(np.mean(accuracies)),fontsize=25)
plt.rc('xtick', labelsize=30)
plt.rc('ytick', labelsize=25)
x_range_future = np.arange(len(results[0]))
plt.xticks(x_range_future[::15], date_ori[::15],rotation=90)
plt.legend(prop={'size': 25})
plt.show()

実際のトレンドを8月16日まで延長する。

stocks_start = datetime.datetime(2018, 1, 1)
stocks_end = datetime.datetime(2019, 8, 19)

def get(tickers, startdate, enddate):
    def data(ticker):
        return (pdr.get_data_yahoo(ticker, start=startdate, end=enddate))
    datas = map(data, tickers)
    return(pd.concat(datas, keys=tickers, names=['Ticker', 'Date']))
               
recent_data = get(tickers, stocks_start, stocks_end)
df1 = recent_data[['Open','High','Low','Close','Adj Close','Volume']]
df1.reset_index(level='Ticker',drop=True,inplace=True)
df1.reset_index(inplace=True)
df1.tail()
Date Open High Low Close Adj Close Volume
404 2019-08-12 34.160000 34.650002 32.080002 32.430000 32.430000 106737000
405 2019-08-13 32.360001 33.139999 31.719999 32.110001 32.110001 102009700
406 2019-08-14 31.000000 31.049999 29.510000 30.240000 30.240000 127521500
407 2019-08-15 30.629999 30.730000 29.209999 29.670000 29.670000 71674400
408 2019-08-16 30.309999 31.480000 30.209999 31.180000 31.180000 70469800
accuracies = [calculate_accuracy(df['Close'].values, r[:-test_size]) for r in accepted_results]

plt.figure(figsize = (22, 15))
for no, r in enumerate(accepted_results):
    plt.plot(r, label = 'forecast %d'%(no + 1))
plt.plot(df1['Close'], label = 'true trend', c = 'black')
plt.title('average accuracy: %.4f'%(np.mean(accuracies)),fontsize=25)
plt.rc('xtick', labelsize=30)
plt.rc('ytick', labelsize=25)
x_range_future = np.arange(len(results[0]))
plt.xticks(x_range_future[::15], date_ori[::15],rotation=90)
plt.legend(prop={'size': 25})
plt.show()

7月19日以降の予測はそんなに上手くできていないことに気付かされる。最後に正確度が低い(正確度90以下の)予測トレンドを省く。

accepted_results2 = []
for r in accepted_results:
    if calculate_accuracy(df['Close'].values, r[:-test_size])>90:
        accepted_results2.append(r)
len(accepted_results2)
4
accuracies = [calculate_accuracy(df['Close'].values, r[:-test_size]) for r in accepted_results2]

plt.figure(figsize = (22, 15))
for no, r in enumerate(accepted_results2):
    plt.plot(r, label = 'forecast %d'%(no + 1))
plt.plot(df1['Close'], label = 'true trend', c = 'navy',lw=2)
plt.title('average accuracy: %.4f'%(np.mean(accuracies)),fontsize=25)
plt.rc('xtick', labelsize=30)
plt.rc('ytick', labelsize=25)
x_range_future = np.arange(len(results[0]))
plt.xticks(x_range_future[::15], date_ori[::15],rotation=90)
plt.legend(prop={'size': 25})
plt.show()

予測3が一番まともなような気もするが、それでも30日先のトレンドを正確には捉えきれていない。


スポンサーリンク
スポンサーリンク